三对角线性方程组(tridiagonal systems of equations)
三对角线性方程组,对于熟悉数值分析的同学来说,并不陌生,它经常出现在微分方程的数值求解和三次样条函数的插值问题中。三对角线性方程组可描述为以下方程组:
aixi−1+bixi+cixi+1=diaixi−1+bixi+cixi+1=di 其中
1≤i≤n,a1=0,cn=0.1≤i≤n,a1=0,cn=0. 以上方程组写成矩阵形式为
Ax=dAx=d,即:
⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢b1a20c1b2a3c2b3⋱⋱⋱an0cn−1bn⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎢⎢⎢x1x2x3⋮xn⎤⎦⎥⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎢d1d2d3⋮dn⎤⎦⎥⎥⎥⎥⎥⎥⎥[b1c10a2b2c2a3b3⋱⋱⋱cn−10anbn][x1x2x3⋮xn]=[d1d2d3⋮dn] 三对角线性方程组的求解采用追赶法或者Thomas算法,它是Gauss消去法在三对角线性方程组这种特殊情形下的应用,因此,主要思想还是Gauss消去法,只是会更加简单些。我们将在下面的算法详述中给出该算法的具体求解过程。
当然,该算法并不总是稳定的,但当系数矩阵
AA为严格对角占优矩阵(Strictly D iagonally Dominant, SDD)或对称正定矩阵(Symmetric Positive Definite, SPD)时,该算法稳定。对于不熟悉SDD或者SPD的读者,也不必担心,我们还会在我们的博客中介绍这类矩阵。现在,我们只要记住,该算法对于部分系数矩阵
AA是可以求解的。
算法详述
追赶法或者Thomas算法的具体步骤如下:
- 创建新系数c∗ici∗和d∗idi∗来代替原先的ai,bi,ciai,bi,ci,公式如下:
c∗i={ c1b1cibi−aic∗i−1;i=1;i=2,3,...,n−1d∗i=⎧⎩⎨⎪⎪d1b1di−aid∗i−1bi−aic∗i−1;i=1;i=2,3,...,n−1ci∗={c1b1;i=1cibi−aici−1∗;i=2,3,...,n−1di∗={d1b1;i=1di−aidi−1∗bi−aici−1∗;i=2,3,...,n−1 - 改写原先的方程组Ax=dAx=d如下:
⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢100...0c∗110...00c∗21000c∗30......00000..c∗n−11⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢x1x2x3...xk⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢d∗1d∗2d∗3...d∗n⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥[1c1∗00...001c2∗0...0001c3∗00........cn−1∗000001][x1x2x3...xk]=[d1∗d2∗d3∗...dn∗] - 计算解向量xx,如下:
xn=d∗n,xi=d∗i−c∗ixi+1,i=n−1,n−2,...,2,1xn=dn∗,xi=di∗−ci∗xi+1,i=n−1,n−2,...,2,1
以上算法得到的解向量xx即为原方程Ax=dAx=d的解。
下面,我们来证明该算法的正确性,只需要证明该算法保持原方程组的形式不变。
首先,当
i=1i=1时,
1∗x1+c∗1x2=d∗1⇔1∗x1+c1b1x2=d1b1⇔b1∗x1+c1x2=d11∗x1+c1∗x2=d1∗⇔1∗x1+c1b1x2=d1b1⇔b1∗x1+c1x2=d1 当
i>1i>1时,
1∗xi+c∗ixi+1=d∗i⇔1∗xi+cibi−aic∗i−1xi+1=di−aid∗i−1bi−aic∗i−1⇔(bi−aic∗i−1)xi+cixi+1=di−aid∗i−11∗xi+ci∗xi+1=di∗⇔1∗xi+cibi−aici−1∗xi+1=di−aidi−1∗bi−aici−1∗⇔(bi−aici−1∗)xi+cixi+1=di−aidi−1∗ 结合
aixi−1+bixi+cixi+1=diaixi−1+bixi+cixi+1=di,只需要证明
xi−1+c∗i−1xi=d∗i−1xi−1+ci−1∗xi=di−1∗,而这已经在该算法的第(3)步的中的计算
xi−1xi−1中给出。证明完毕。
Python实现
我们将要求解的线性方程组如下:
⎡⎣⎢⎢⎢⎢⎢⎢4100014100014100014100014⎤⎦⎥⎥⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎢⎢x1x2x3x4x5⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢10.5−132⎤⎦⎥⎥⎥⎥[4100014100014100014100014][x1x2x3x4x5]=[10.5−132] 接下来,我们将用Python来实现该算法,函数为TDMA,输入参数为列表a,b,c,d, 输出为解向量x,代码如下:
# use Thomas Method to solve tridiagonal linear equation# algorithm reference: https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithmimport numpy as np# parameter: a,b,c,d are list-like of same length# tridiagonal linear equation: Ax=d# b: main diagonal of matrix A# a: main diagonal below of matrix A# c: main diagonal upper of matrix A# d: Ax=d# return: x(type=list), the solution of Ax=ddef TDMA(a,b,c,d): try: n = len(d) # order of tridiagonal square matrix # use a,b,c to create matrix A, which is not necessary in the algorithm A = np.array([[0]*n]*n, dtype='float64') for i in range(n): A[i,i] = b[i] if i > 0: A[i, i-1] = a[i] if i < n-1: A[i, i+1] = c[i] # new list of modified coefficients c_1 = [0]*n d_1 = [0]*n for i in range(n): if not i: c_1[i] = c[i]/b[i] d_1[i] = d[i] / b[i] else: c_1[i] = c[i]/(b[i]-c_1[i-1]*a[i]) d_1[i] = (d[i]-d_1[i-1]*a[i])/(b[i]-c_1[i-1] * a[i]) # x: solution of Ax=d x = [0]*n for i in range(n-1, -1, -1): if i == n-1: x[i] = d_1[i] else: x[i] = d_1[i]-c_1[i]*x[i+1] x = [round(_, 4) for _ in x] return x except Exception as e: return edef main(): a = [0, 1, 1, 1, 1] b = [4, 4, 4, 4, 4] c = [1, 1, 1, 1, 0] d = [1, 0.5, -1, 3, 2] ''' a = [0, 2, 1, 3] b = [1, 1, 2, 1] c = [2, 3, 0.5, 0] d = [2, -1, 1, 3] ''' x = TDMA(a, b, c, d) print('The solution is %s'%x)main()
运行该程序,输出结果为:
The solution is [0.2, 0.2, -0.5, 0.8, 0.3]
本算法的Github地址为: .
最后再次声明,追赶法或者Thomas算法并不是对所有的三对角矩阵都是有效的,只是部分三对角矩阵可行。
参考文献